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Abstract. Integrated forms of the one-loop evolution equations are given for the Yukawa couplings in
the MSSM, valid for any value of tan β, generalizable to virtually any number of Yukawa fermions, and
including all gauge couplings. These forms turn out to have nice mathematical convergence properties
which we prove, and we determine the ensuing convergence criteria. Furthermore, they allow one to write
down general sufficient and necessary conditions to avoid singularities in the evolution of the Yukawa
couplings over physically relevant energy ranges. We also comment briefly on the possible use of these
features for physics issues and give a short numerical illustration.

1 Introduction

Large Yukawa couplings often play an important role in
spontaneous electroweak symmetry breaking models such
as the standard model, its extensions, and also in some al-
ternatives to it. The existence of infrared (IR) attractive
fixed points [1] and effective IR fixed points [2] in such a
regime can be a benchmark in selecting the phenomeno-
logically viable theories in view of the measured mass
of the top quark. Such considerations clearly favoured
the minimal supersymmetric extension of the standard
model (MSSM) [3], with its upper bound on the top mass,
mt ≤ (190–200 GeV)sin β [4] over alternatives such as [5].

In supersymmetry there is of course much more to
say. In the minimal supersymmetric extension of the stan-
dard model (MSSM) [6], the spontaneous breaking of the
electroweak symmetry is generically driven by the large
top quark mass in association with a soft supersymme-
try breaking sector [3]. Such a possibility can be looked
at as the phenomenological aspect of a [still to be discov-
ered] deep connection between the origin of supersymme-
try breaking and that of the electroweak symmetry break-
ing. Meanwhile, it helps in correlating theoretically the
very many free parameters of the MSSM, leading to quan-
titative estimates of the supersymmetric partners spec-
trum, which are of prime importance in guiding the exper-
imental search for supersymmetry, and relating (at least
qualitatively) the physics over as many orders of magni-
tudes as there are between the GUT scales and the elec-
troweak scale.

Of course, the key point in all the above issues is
the way the various parameters “run”, as dictated by the
renormalization group equations. The RGEs are, in gen-
eral, complicated coupled differential equations already at
the one-loop level and one usually resorts to numerical
methods to solve them [7]. However, analytical solutions

would be desirable for several reasons (besides the obvious
one of allowing a better control over the structure of the
running). The radiative breaking of SUc(3) × SUL(2) ×
UY (1) and the structure of the vacuum are controlled by
the effective potential (EP) of the theory. The theoretical
improvement of the functional form of the EP needs the
analytical form of the running of involved quantities such
as masses, couplings and fields which enter the game. If
the analytical form of the EP beyond the tree level were
known exactly, or at least in an RG improved form be-
yond the naive loop corrections, one could hope to de-
termine the relations the initial values of the parameters
should fulfill, to break the electroweak symmetry at the
right energy scale and avoid in the same time color and
charge breaking vacua1. Another important application of
the analytical solutions is the determination of the effec-
tive behaviour in the low energy regime (infrared regions)
independently (but within a domain) of the actual values
in the ultraviolet, such as the top Yukawa coupling effec-
tive fixed point [2], or the triviality bounds on the Higgs
mass.

Analytical solutions of the complete set of RGEs in
the MSSM were known to one-loop order for small tanβ,
strictly speaking in the case all Yukawa couplings are put
to zero except for the top quark. Actually the structure
of the coupled equations is such that a necessary condi-
tion to solve them entirely is to be able to solve first for
the Yukawa couplings. This is of course not enough, and
initially one assumed also universality of the soft SUSY
breaking terms at the GUT scale in order to solve for
those quantities too. This assumption can however be re-

1 In the absence of such a knowledge, due partly (in the
RG improvement program) to the existence of many different
mass scales, one relies on rough approximations hoping that
they encompass the leading behaviour [8]
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laxed [10] but still for small tanβ. It is thus natural to
try to find exact solutions for the Yukawa sector for any
value of tanβ, for comparable top and bottom Yukawa
couplings, and also bringing in the game the τ lepton
Yukawa coupling as well in order to cope with the case
of b–τ unification [11]. Some attempts have been made
(for instance in [12]) to generally solve the top–bottom
Yukawa system which leads to implicit solutions provided
one neglects the U(1)Y gauge coupling (see also [13]).

In the present paper we study some properties of the
runnings of the Yukawa couplings as dictated by the RGEs
to one loop. The first aim is to provide suitable expressions
for the exact solutions, which we call “integrated forms”.
Although these expressions do not appear in closed forms,
they are especially convenient because, if one insists on
making them explicit, they come out as continued inte-
grated fractions the convergence of which can be kept un-
der control. Although our main results are a priori valid
for any gauge theory with an arbitrarily extended Yukawa
sector (including the special case of the standard model),
we restrict most of the discussions and further illustrations
to the case of the MSSM. We will give integrated forms,
valid for any number of Yukawa couplings, of the general
explicit solutions corresponding to the coupled renormal-
ization group equations which read in the MSSM [14]

Gauge couplings (gi with i = 1, 2, 3 and ng the generation
number)

dgi

dt
=

1
32π2 big

3
i with b1 = −1 − 10

3
ng,

b2 = 5 − 2ng, b3 = 9–2ng. (1.1)

Yukawa couplings (i = 1, 2, 3 generations)

dY i
u

dt
= − Y i

u

32π2

[
3(Y i

u)2 + 3
∑

k=gen

(Y k
u )2 + (Y i

d )2

−
(
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9

g2
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2 +
16
3

g2
3

)]
, (1.2)

dY i
d
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= − Y i

d

32π2

[
3(Y i

d )2 + (Y i
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∑
k=gen

{3(Y k
d )2 + (Y k

l )2}

−
(

7
9
g2
1 + 3g2

2 +
16
3

g2
3

)]
, (1.3)

dY i
l

dt
= − Y i

l

32n1.1π2

[
3(Y i

l )2 +
∑

k=gen

{(Y k
l )2 + 3(Y k

d )2}

−3(g2
1 + g2

2)
]
. (1.4)

Here the evolution parameter t is defined by t = Log(M2
U/

Q2) where MU denotes some initial scale. Note that since
a gauge coupling unification condition is not essential in
the present study, we write the RGE equations in terms of
the low energy SU(3)c×SU(2)L×U(1)Y gauge couplings,
respectively g3, g2 and g1. Note also that we assume here,
and throughout the paper, flavour conserving (diagonal)
Yukawa matrices.

The rest of the paper is organized as follows. In Sect. 2
we recall the known solution for large top Yukawa cou-
pling and give the integrated form of the general solution
valid for any value of the top and bottom Yukawas. We
then generalize those integrated forms to any number of
Yukawa couplings, in particular to the top–bottom–τ sys-
tem. In Sect. 3 we give a proof of the convergence of these
forms in both the top–bottom and the top–bottom–τ case.
Section 4 is devoted to the question of avoiding Landau
poles in the Yukawa runnings. There we give a generaliza-
tion to the top–bottom case of some well-known bounds,
and establish necessary and sufficient conditions. Prelim-
inary applications and comments are made in Sect. 5 and
conclusions and an outlook are given in Sect. 6. An Ap-
pendix contains some detailed proofs and technical mate-
rial.

2 Integrated form
of the Yukawa coupling RGEs

2.1 Large top quark Yukawa solutions: a reminder

We are interested here in (1.2)–(1.4). They can be treated
independently of the rest of the system, especially from
the gauge couplings for which the running is determined
a priori via (1.1). (This is no more true at two-loop order
where the gauge and Yukawa equations become highly in-
terwound.) When all Yukawa couplings except Yt are ne-
glected, (1.3) and (1.4) become trivial while (1.2) becomes
of the Bernoulli type in the variable yt ≡ Y 2

t :

d
dt

yt = f1(t)yt + by2
t , (2.1)

where

f1(t) =
1

16π2 (
16
3

g2
3 + 3g2

2 +
13
9

g2
1), b = − 6

16π2 , (2.2)

and it is easily solved to give [15,9]

yt(t) =
y0E(t)

1 − by0
∫ t

0 E(t′)dt′
, (2.3)

where

E(t) = e
∫ t
0 f1(t′)dt′

and y0 = Y 2
t (t = 0). (2.4)

2.2 top–bottom case

In the more general case where both Yt and Yb are kept in
the game, but neglecting all other Yukawa couplings, (1.2)
and (1.3) read, after the change of variables yt ≡ Y 2

t , yb ≡
Y 2

b ,

d
dt

yt = f1(t)yt + aybyt + by2
t ,

d
dt

yb = f2(t)yb + aybyt + by2
b , (2.5)
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where f1(t) and b are given in (2.2) and

f2(t) =
1

16π2 (
16
3

g2
3 + 3g2

2 +
7
9
g2
1), a = − 1

16π2 . (2.6)

As far as we know, the system (2.5) is not treated in stan-
dard text books, and although it looks simple at first sight,
we could not find a systematic way of relating it to a stan-
dard form2. It is also relatively easy to solve the system up
to first order in Yb in the region Yt � Yb. This is already
an improvement of the known solutions with Yb ∼ 0. It ex-
tends the numerical validity much further than tanβ ' 10.

More importantly, this approximate solution gives a
valuable hint for the structure of a suitable integrated form
which can then be found by sheer guess and will be written
down below. But first, the approximate solution can be
obtained in the form yt(t) = ỹt(t)+δ(t) where ỹt(t) is given
by (2.3) and when necessary we linearize the equations in
the regime yb(t), |δ(t)| � 1. One then finds for yb

yb(t) =
y0

bE21(t)

1 − by0
b

∫ t

0 E21(t′)dt′
, (2.7)

where

E21(t) =
E2(t)

(1 − by0
t

∫ t

0 E1(t′)dt′)a/b
, (2.8)

Ei(t) = e
∫ t
0 fi(t′)dt′

i = 1, 2, (2.9)

and a slightly more complicated expression for yt, given in
Appendix B. A little thinking then leads to the following
form of the exact “solution” we were looking for:

yt(t) =
y0

t E12(t)

1 − by0
t

∫ t

0 E12(t′)dt′
, (2.10)

yb(t) =
y0

bE21(t)

1 − by0
b

∫ t

0 E21(t′)dt′
, (2.11)

where

E12(t) =
E1(t)

(1 − by0
b

∫ t

0 E21(t′)dt′)a/b
, (2.12)

E21(t) =
E2(t)

(1 − by0
t

∫ t

0 E12(t′)dt′)a/b
, (2.13)

and y0
t ≡ Y 2

t (t = 0), y0
b ≡ Y 2

b (t = 0) are any initial con-
ditions. The reader can easily check that the solutions
(2.10) and (2.11) exactly satisfy (2.5) without any restric-
tion or assumption about the magnitudes of the Yukawa
couplings, i.e. for any value of tanβ. They formally re-
semble (2.3) of which they are a generalization. Of course,
although our solutions, yt, yb are now explicit in terms
of E12 and E21, the latter are given only implicitly by

2 The situation would be much simpler if f1(t) = f2(t), in
which case the equations can be solved by quadrature after
some change of variables, leading though only to implicit solu-
tions involving some hypergeometric functions [12]

(2.12) and (2.13), which appear as coupled nonlinear inte-
gral equations. Therefore, the procedure is useful only if it
provides us with a systematic (and hopefully quick) way
to solve these equations within a given accuracy. It will be
shown in Sect. 3 that mere iterations achieve this goal. In
fact, such iterations correspond to the truncations of the
“continued integrated fractions” which naturally emerge
as formal solutions of (2.12) and (2.13), e.g.: (see (2.14)
on top of the page)

2.3 Arbitrary number of Yukawa fermions

In fact, the above solutions are easily generalized to in-
clude any number of leptons and quarks. For instance, if
one includes in the game a third Yukawa coupling, then
(1.2), (1.3 and (1.4) take the following form:

d
dt

y1 = f1(t)y1 + a11y
2
1 + a12y1y2 + a13y1y3,

d
dt

y2 = f2(t)y2 + a22y
2
2 + a21y2y1 + a23y2y3,

d
dt

y3 = f3(t)y3 + a33y
2
3 + a31y3y1 + a32y3y2.

The exact solution reads:

y1 =
y0
1u1

1 − a11y0
1

∫
u1

,

y2 =
y0
2u2

1 − a22y0
2

∫
u2

,

y3 =
y0
3u3

1 − a33y0
3

∫
u3

,

where u1, u2 and u3 are defined through the implicit sys-
tem

u1 =
E1

(1 − a22y0
2

∫
u2)a12/a22(1 − a33y0

3

∫
u3)a13/a33

,

u2 =
E2

(1 − a11y0
1

∫
u1)a21/a11(1 − a33y0

3

∫
u3)a23/a33

,

u3 =
E3

(1 − a11y0
1

∫
u1)a31/a11(1 − a22y0

2

∫
u2)a32/a22

,

(2.15)

and
∫

uj stands for
∫ t

0 dt′uj(t′).
In the interesting case of the top–bottom–τ system

with yt ≡ y1, yb ≡ y2 and yτ ≡ y3 one has in the MSSM

a11 = a22 = − 6
16π2 ; a33 = − 4

16π2 ,

a12

a22
=

a21

a11
=

1
6
;

a31

a11
=

a13

a33
= 0,

a23

a33
=

1
4
;

a32

a22
=

1
2
,

f3(t) =
3

16π2 (g2
1 + g2

2); E3(t) = e
∫ t
0 f3(t′)dt′

, (2.16)



334 G. Auberson, G. Moultaka: A convergent scheme for one-loop evolutions of the Yukawa couplings in the MSSM

E12(t) =
E1(t)

(1 − by0
b

∫ t

0

E2(t1)dt1

(1 − by0
t

∫ t1
0

E1(t2)dt2

(1 − by0
b

∫ t2
0

E2(t3)dt3

(1 − by0
t

∫ t3
0

E1(t4)dt4

. . .
)a/b

)a/b

)a/b

)a/b

. (2.14)

and f1,2(t), E1,2(t) as previously. It is interesting to note
that in this case uτ and ut are directly related via

uτ

E3
=
( ut

E1

)3
, (2.17)

a reflection of the fact that, in the MSSM, the running
of yt and yτ at one-loop order are mutually affected only
indirectly through the running of yb (a31 = a13 = 0), at
variance with the case of the non-supersymmetric stan-
dard model (SM).

Finally, the extension to more than three Yukawa cou-
plings will not play any role in the present paper. Never-
theless, we give it for the sake of completeness in Appendix
C.

3 Proof of convergence

3.1 The top–bottom case

In this section we make a mathematical digression to study
some useful properties of our solutions. Even though (2.12)
and (2.13) give Eij only implicitly, they enjoy the prop-
erty of defining a contraction mapping. This is about all
that one needs to give a rigorous proof for the existence
and uniqueness of the Eij , and thus of the existence and
uniqueness of the solutions given in (2.10) and (2.11). This
proof will also be of practical use. It provides us with a cri-
terion for the convergence of the truncated forms of (2.14)
towards the exact solution, and the rate of this conver-
gence can be controlled so that a very good approximation
will be obtained with a few iterations (or even just one).

For the sake of completeness, we recall here in simple
terms the conditions required for a contraction mapping,
and then prove that they are indeed satisfied in our case.
Let us define

U1(t) =
E12(t)
E1(t)

, (3.1)

U2(t) =
E21(t)
E2(t)

,

and think of U1 and U2 as forming a vector

~U(t) =

(
U1(t)
U2(t)

)
, (3.2)

in some space ET where the evolution parameter t remains
in the interval 0 ≤ t ≤ T for a given value of T . Then
(2.12) and (2.13) restrict the U ′

is to the positive region
Ui(t) ≥ 0 (provided one stays far from the Landau poles),
and, furthermore, define a mapping in this region, A :
~U 7→ ~U ′ through

U ′
1(t) =

1

(1 − by0
2

∫ t

0 E2(t′)U2(t′)dt′)a/b
,

U ′
2(t) =

1

(1 − by0
1

∫ t

0 E1(t′)U1(t′)dt′)a/b
. (3.3)

The idea now is to show that the mapping A shrinks uni-
formly, at each iteration, the “distance” between any two
vectors in ET (subject to the condition Ui(t) ≥ 0). More
precisely we will prove that there exists a positive con-
stant number KT < 1 such that the following inequality
is satisfied

‖ ~U ′ − ~V ′ ‖≤ KT ‖ ~U − ~V ‖, (3.4)

for any pair of vectors (~U, ~V ) belonging to ET and satis-
fying Ui, Vi ≥ 0 (i = 1, 2). Here ‖ . ‖ is defined by

‖ ~U ‖= max{ sup
0≤t≤T

| U1(t) |, sup
0≤t≤T

| U2(t) |}. (3.5)

Then, according to the “contraction mapping principle”,
the existence of the (unique) solution of (2.12) and (2.13)
in ET is guaranteed, and the nth iteration An ~U approaches
this solution at least as fast as Kn

T .
To prove (3.4) one writes the following sequence of

inequalities

| U ′
i(t) − V ′

i (t) |

≤
{

y0
j

∫ t

0
dt′Ej(t′) | Uj(t′) − Vj(t′) |

}
/{[

16π2 + 6y0
j min

{∫ t

0
dt′Ej(t′)Uj(t′),

∫ t

0
dt′Ej(t′)Vj(t′)

}]7/6}

≤ y0
j

16π2 sup
0≤τ≤T

| Uj(τ) − Vj(τ) |
∫ T

0
dt′Ej(t′)

≤ y0
j

16π2 ‖ ~U − ~V ‖
∫ T

0
dt′Ej(t′), (3.6)
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valid for i 6= j with i, j = 1, 2 with y1 ≡ yt, y2 ≡ yb and
where we plugged the actual values of the coefficients a, b
in (2.5). The first inequality in (3.6) is derived from (3.3)
and from the inequality,

|
(

1
1 + α

)c

−
(

1
1 + β

)c

|≤ c
| α − β |

(1 + min {α, β})c+1 , (3.7)

valid for any α, β, larger than −1 and c > 0 (here c = 1/6),
the second from the positivity of Ui, Vi, Ei and y0

i , and the
third from the definition (3.5). Equation (3.6) immediately
leads to (3.4) with

KT =
1

16π2 max

{
y0

t

∫ T

0
dtE1(t), y0

b

∫ T

0
dtE2(t)

}
.

(3.8)

The convergence condition KT < 1 is easily met even
when T is large enough to encompass the whole evolution
range from the GUT scale to the MZ scale. For instance, if
T ≈ 66 and α−1

GUT ≈ 25, one needs Y 0
t , Y 0

b
<∼ O(π) where

the Y 0
i are the GUT scale values of the Yukawa couplings,

to ensure convergence. These conditions are naturally met
within the perturbative regime. We should stress, however,
that these are only sufficient conditions.

3.2 The top–bottom–τ case

As we said previously the exact solutions (2.15) and (2.15)
to the generalized equations with three Yukawa couplings
or more, is a direct generalization of (2.10) and (2.11).
Similarly, the proof of convergence goes essentially along
the same lines as in the previous section, when supple-
mented with the inequality.∣∣∣∣ 1

(1 + α1)a

1
(1 + β1)b

− 1
(1 + α2)a

1
(1 + β2)b

∣∣∣∣
≤ a | α1 − α2 |

(1 + min{α1, α2})a+1 +
b | β1 − β2 |

(1 + min{β1, β2})b+1 ,

valid for any a, b, αi, βi > 0. Defining a mapping through
(2.15), one finds the convergence criterion

KT = max
(ijk)circ. perm. of (123)

×
{

−aijy
0
j

∫ T

0
Ej − aiky0

k

∫ T

0
Ek

}
< 1. (3.9)

In the top–bottom–τ case it reads

KT =
1

16π2 max

{
y0

b

∫ T

0
E2; y0

t

∫ T

0
E1 + y0

τ

∫ T

0
E3;

3y0
b

∫ T

0
E2

}

=
1

16π2 max

{
y0

t

∫ T

0
E1 + y0

τ

∫ T

0
E3;

3y0
b

∫ T

0
E2

}
< 1. (3.10)

We see that the sufficient convergence criterion can be-
come more severe in this case by about a factor 3 in the
regime y0

t ∼ y0
b ∼ y0

τ .

4 Avoiding Landau poles

One question that can be clearly answered with the knowl-
edge of analytical solutions is how to determine the condi-
tions which guarantee that the values of the Yukawa cou-
plings at some low energy scale, say the electroweak scale,
remain consistent with a Landau “pole” free theory up to a
given high energy scale, typically a grand unification scale.
The answer would be trivial if one starts from the high en-
ergy scale Yukawa coupling and runs down. Indeed in this
case, it is clear from the general form of the solutions,
(2.10) and (2.11) and the fact that b < 0, y0(≡ Y 02) ≥ 0
and E(t)ij ≥ 0, that one does not hit a Landau pole all the
way down below the initial scale3. The situation is more
complicated if one starts from some Yukawa coupling val-
ues at a low scale and tries to run upwards to determine
the corresponding values at a GUT scale. This is a phe-
nomenologically typical situation if a model-independent
reconstruction of the fundamental parameters is to be car-
ried out, starting from the experimental input.

Moreover, since in the vicinity of such Landau poles
the Yukawa couplings become very large, the conditions
for avoiding these poles correspond in some cases to effec-
tively attractive fixed points, such as the celebrated rela-
tion

mtop ≈ (190–200 GeV) sinβ, (4.1)

in the MSSM valid when all Yukawa couplings are ne-
glected in comparison to the that of the top quark [4].
When the Yukawa couplings are of comparable values such
a correspondence becomes more involved, as can be seen
for instance from the dependence on y0

t and y0
b in (2.14)

[See also the discussion in Sect. 5.2].
To illustrate the case, we start first with the solution

for small tanβ, i.e. Y 0
t � Y 0

b ∼ 0, given in (2.3). Writing
it in the form

y0 =
yt(t)

E(t) + byt(t)
∫ t

0 E(t′)dt′
, (4.2)

one sees immediately that yt(t) should satisfy

yt(t) < − E(t)

b
∫ t

0 E(t′)dt′
, (4.3)

for any value of t > 0 in order to be consistent with the
positivity of y0 and yt(t). Ensuring this positivity auto-
matically avoids the Landau pole (we rely here on the
fact that b < 0, see (2.2 )). Thus, contrary to the initial

3 Note that here we are only interested in poles which can
occur explicitly in the Yukawa couplings. In practice one any
way stays far from gauge coupling Landau poles, given the
running range relevant to our discussion
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value at a high scale t = 0, values of yt cannot be ar-
bitrarily chosen at lower scales, the maximum allowed in
this case being simply given by (4.3). With this in mind, it
is straightforward to completely eliminate the dependence
on y0 in the running to get

yt(t) =
yt(t0)E(t; t0)

1 − byt(t0)
∫ t

t0
E(t′; t0)dt′

, (4.4)

where

E(t; t0) ≡ E(t)
E(t0)

. (4.5)

Here yt(t0) is any initial value satisfying (4.3) for t = t0.
In the more general case, when yb is not neglected, one

can also write

yb(t) =
yb(t0)E21(t; t0)

1 − byb(t0)
∫ t

t0
E21(t′; t0)dt′

,

yt(t) =
yt(t0)E12(t; t0)

1 − byt(t0)
∫ t

t0
E12(t′; t0)dt′

, (4.6)

with

E12(t; t0) =
E1(t; t0)

(1 − byb(t0)
∫ t

t0
E21(t′; t0)dt′)a/b

,

E21(t; t0) =
E2(t; t0)

(1 − byt(t0)
∫ t

t0
E12(t′; t0)dt′)a/b

, (4.7)

where

Ej(t; t0) = e− ∫ t0
t dt′fj(t′) =

Ej(t)
Ej(t0)

. (4.8)

Note that here t0 ≥ t corresponds to an initial energy
scale lower than the running scale corresponding to t. In
this case, however, it is no more possible to easily deter-
mine a sufficient and necessary condition (if any) on yb(t0)
and yt(t0) to avoid the Landau pole. Indeed, the sufficient
and necessary conditions for a non-singular running in the
interval [T, t0] read

1 − byb(t0)
∫ T

t0

E21(t′; t0)dt′ > 0, (4.9)

1 − byt(t0)
∫ T

t0

E12(t′; t0)dt′ > 0, (4.10)

as easily seen from (4.6). However, E12 and E21 themselves
depend on y0

t and y0
b , so that the above conditions are

highly implicit in y0
t and y0

b .
Instead, one can immediately determine some neces-

sary conditions, and, with some extra work, also some
sufficient ones. We list these conditions below and refer
the reader to the Appendix for the detailed proofs.
The necessary conditions: one can write a tower of pair of
inequalities, each pair being a necessary condition weaker
than the subsequent one,




yt(t0) <
E1(t0)

|b| ∫ t0
T

dtE1(t)
,

yb(t0) <
E2(t0)

|b| ∫ t0
T

dtE2(t)
,

(4.11)




yt(t0) <
E1(t0)

|b| ∫ t0
T

dt1E1(t1)

(1 − |b|yb(t0)
∫ t0

t1
E2(t2; t0)dt2)a/b

,

yb(t0) <
E2(t0)

|b| ∫ t0
T

dt1E2(t1)

(1 − |b|yt(t0)
∫ t0

t1
E1(t2; t0)dt2)a/b

,

(4.12)

...

...


yt(t0) <
1

|b| ∫ t0
T

dtE12(t; t0)
,

yb(t0) <
1

|b| ∫ t0
T

dtE21(t; t0)

. (4.13)

(4.14)

The limit of this tower of inequalities (assuming of course
that the iteration converges) is precisely the necessary and
sufficient condition (4.9) and (4.10), as can be seen from
(4.7) when written in a form similar to (2.14).
The sufficient conditions:

yt(t0) <
1

c(1 + 1/c)1+c

E1(t0)

|b| ∫ t0
T

dtE1(t)
, (4.15)

yb(t0) <
1

c(1 + 1/c)1+c

E2(t0)

|b| ∫ t0
T

dtE2(t)
, (4.16)

when c = a/b. It is interesting to note that the above
conditions have basically the same form as (4.11), apart
from the factor 1/(c(1 + 1/c)1+c) (∼ 0.62 in the MSSM.)

5 Preliminary applications and comments

The aim of this section is to illustrate briefly through some
examples the possible use of the integrated forms and to
make contact with the existing studies and approxima-
tions. It is, however, obviously not meant to be exhaustive
nor refined from the phenomenological point of view (for
instance no threshold effects or higher loop effects are in-
cluded), as this would deserve a separate analysis by itself.
Let us also keep in mind that all the functions Ei which
enter the solutions are analytically known in terms of the
initial gauge coupling values as can been seen from (1.1)
and its solutions.

5.1 Landau pole free bounds

The necessary and sufficient bounds found in the previ-
ous section are the exact generalization of the one in [2]
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initially derived in the regime of large yt (� yb). The nec-
essary bounds (4.11) which would also be sufficient in the
limit a → 0 (where they become identical to (4.15) and
(4.16)) give a first estimate of the allowed values for yt, yb

at low energy, restricting them to a rectangle,

yMSSM
t (EW) < yt , yMSSM

b (EW) < yb, (5.1)

where yt and yb depend on the gauge couplings and are
easily determined numerically, for instance in terms of a
grand unified scale, the value of the gauge couplings at
that scale, and some low energy electroweak scale.

For instance, one has roughly (neglecting the g1 and
g2 couplings)

yt,b =
7
18

g4
3(EW)

1 −
(

g2
3(EW)

g2
3(GUT)

)−7/9 . (5.2)

We stress that the necessary bounds in (5.1) involve no ap-
proximation whatsoever. One can readily turn them into
constraints on the tanβ parameter at some electroweak
scale:

(mtopg2)2

(
√

2ytMW )2 − (mtopg2)2

< tan2 β <
(
√

2ybMW )2 − (mbg2)2

(mbg2)2
. (5.3)

The bars indicate that the masses and gauge couplings are
running quantities at the chosen low energy scale.

Going now to the improved bounds (4.12) one can re-
duce further the allowed range for the Yukawa couplings.
These bounds do not allow in their general form an easy
analytic determination of the allowed regions. To get a
feeling about these regions, let us illustrate the case in
two different approximations:

(1) E1 = E2 ≡ E, i.e. neglect the difference f1 − f2 =
g2
1/24π2;

(2) assume yb(t0), yt(t0) sufficiently small for a first order
expansion to be legitimate

(1) In this case one integral can be performed exactly in
(4.12), leading to


yt(t0) <
yb(t0)(1 − a

b )

1 − (1 − |b|yb(t0)
∫ t0

T
dt2E(t2; t0))1−a/b

,

yb(t0) <
yt(t0)(1 − a

b )

1 − (1 − |b|yt(t0)
∫ t0

T
dt2E(t2; t0))1−a/b

.

(5.4)

The domain defined by (5.4) lies within the rectangle (5.1)
and is controlled by the relative strength of a and b. For in-
stance, the delimiting curves start off at the points (yb, 0)
and (0, yt) with first derivatives equal to −a/(2b) (−1/12
in the MSSM and −1/6 in the SM), to be compared with
0 in the rectangular approximation. Moreover, the exact
fixed line solution yt = yb leads to the constraint

yt(t0) = yb(t0) <
E(t0)

|a + b| ∫ t0
T

dtE(t)
, (5.5)

to be compared with the rectangular approximation (5.1)
where |a+b| is replaced by |b|, (a 14% effect in the MSSM
and a 25% effect in the SM.) These considerations give a
qualitative guideline of the reduction of the allowed do-
main.
(2) In this case one gets a linearized approximation of the
domain [keeping though the effect of the U(1)Y coupling],
in the following form,{

|b|(∫ E1)2yt(t0) + |a|(∫ E1
∫

E2)yb(t0) <
∫

E1,

|b|(∫ E2)2yb(t0) + |a|(∫ E2
∫

E1)yt(t0) <
∫

E1,
(5.6)

where the Eis here are normalized to Ei(t0),
∫ · · · ≡ ∫ t0

T
. . .

dt1 and
∫ · · · ∫ · · · ≡ ∫ t0

T
. . .dt1

∫ t0
t1

. . .dt2.
In this approximation the necessary domain is delim-

ited by two straight lines with scale dependent slopes.
Again, one can translate these conditions into bounds on
tanβ at some effective electroweak scale.

5.2 yt − yb − g3 approximation, fixed points
and quasi-fixed line

In the approximation where E1(t) = E2(t) ≡ E(t), and
assuming that the initial values y0

t , y0
b are small enough

so that one iteration in the form of (2.12) and (2.13) is
a good approximation for the Eij(t), an easy integration
yields

yt(t) =
y0

t E(t)(
1 − by0

b

∫
E
)a/b

× 1[
1 + y0

t

y0
b

b
b−a

((
1 − by0

b

∫
E
)1−a/b − 1

)], (5.7)

yb(t) =
y0

bE(t)(
1 − by0

t

∫
E
)a/b

× 1[
1 + y0

b

y0
t

b
b−a

((
1 − by0

t

∫
E
)1−a/b − 1

)], (5.8)

provided of course all other Yukawas are put to zero. Note
that at this level of approximations the above solutions de-
pend just on one integral, namely

∫ t

0 E. If one goes further
and neglects the SUL(2) gauge coupling then

∫ t

0 E can be
computed explicitly, and one obtains

ρt(X) = ρ0
t

X

[1 + αρ0
b(X − 1)]c

× 1[
1 + ρ0

t

ρ0
b

1
1−c

(
(1 + αρ0

b(X − 1))1−c − 1
)], (5.9)

ρb(X) = ρ0
b

X

[1 + αρ0
t (X − 1)]c

× 1[
1 + ρ0

b

ρ0
t

1
1−c

(
(1 + αρ0

t (X − 1))1−c − 1
)],(5.10)
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where we now use the reduced variables

ρt ≡ yt(t)
g2
3(t)

, ρb ≡ yb(t)
g2
3(t)

, (5.11)

and

X ≡ E(t)7/16 =
(g2

3(t)

g0
3
2

)7/9
. (5.12)

(Note that α = 18/7, c = a/b = 1/6 in the MSSM and α =
9/2, c = 1/3 in the SM.) The approximate solutions (5.9)
and (5.10) allow one to retrieve the well-known infrared
fixed points in the (ρt, ρb) plane [17]. For instance, in the
MSSM, the fixed point (ρt = 7/18, ρb = 0) (respectively
(ρt = 0, ρb = 7/18)) is obtained by looking at the limiting
behaviour of ρt(X) when ρ0

b → 0 (respectively of ρb(X)
when ρ0

t → 0. On the other hand, the IR (attractive)
fixed point (ρt = 1/3, ρb = 1/3) is obtained by expanding
ρt(X) and ρb(X) simultaneously for small ρ0

t and ρ0
b . It

should come as no surprise that those exact fixed points
are obtained only in this limit since the solutions (5.9) and
(5.10) become exact only in this limit. (See also a related
comment at the end of this section.)

The exact fixed line ρt = ρb is trivially obtained from
(5.9) and (5.10), i.e. starting from ρ0

t = ρ0
b the two re-

duced Yukawas remain equal at any other scale. Perhaps
it is more interesting to ask whether one can analytically
determine the other exact or effective IR fixed lines. An
IR attractive effective fixed line of the form

ρt + ρb =
2
3

(5.13)

was found in [18] for the MSSM.
Starting from (5.9) and (5.10) one can actually im-

prove on this effective fixed line in the following way. For
small ρ0

t , ρ
0
b one obtains the integral line

α(1 − c)(ρ0
b − ρ0

t )ρtρb + ρ0
t (1 − α(ρ0

b + cρ0
t ))ρb

− ρ0
b(1 − α(ρ0

t + cρ0
b))ρt = 0. (5.14)

If we require this integral line to go through the exact fixed
point ρt = ρb = 1/(α(1 + c)) then a fixed line is obtained
in the form

ρt + ρb

ρtρb
= 2(1 + c)α (5.15)

to first order in an expansion around the fixed point ρt =
ρb = 1/(α(1 + c)).

That is, we have

ρt + ρb

ρtρb
= 6 (5.16)

in the case of the MSSM, which constitutes an improved
effective IR fixed line beyond (5.13). One can even reason-
ably expect (5.16), and more generally (5.15), to be exact
in the regime under consideration. Indeed, for instance in
the case of the SM, the effective fixed line (5.15) reads

ρt + ρb

ρtρb
= 12. (5.17)

On the other hand, an exact IR fixed line is known in this
case (see [17]) and is the sum of two terms, one of which
coincides precisely with (5.17), the other being vanishing
to first order in the deviation, δ, around the fixed point,
that is for ρt = 1/6 + δ, ρb = 1/6 − δ.

Let us end this section by noting further possible appli-
cations of the integrated forms. As we mentioned before,
if one starts from (5.9) and (5.10), one retrieves the exact
fixed point ρt = ρb = 1/(α(1 + c)) only in the region of
small ρ0

t , ρ
0
b . Moreover, in the deep infrared region (X →

∞) one obtains from (5.9) and (5.10) ρt = ρb = (1 − c)/α
irrespective of the initial values ρ0

t , ρ
0
b . The IR attraction

to this point is of course an artifact of the approximate
solutions. In fact, one can resum exactly the integrated
forms (2.12) and (2.13) in the limit X → ∞ and obtain
ρt = ρb = 1/(α(1 + c)) as the attractive IR fixed point,
independently of the initial values ρ0

t , ρ
0
b .

Other regimes can be also looked at (for instance ρ0
t �

ρ0
b or ρ0

b � ρ0
t ) for which approximate analytical expres-

sions for the integrated forms can be obtained up to three
iterations, thus improving on (5.9) and (5.10). This allows
one to tackle the form of the fixed line in such regimes.
We do not dwell further on these aspects here.

5.3 Constraints in the yt–yb–yτ

and all gauge couplings case

In this section we illustrate the use of the solutions in the
t–b–τ system only to derive inequalities which correlate
the three fermion running masses in terms of initial values
for the Yukawa couplings. Starting from (2.15)–(2.16) and
using the fact that (1+|α|y0

i

∫
ui)|β| ≥ 1 for all expressions

of that form appearing in (2.15) and (2.15) one writes
immediately the following (necessary) inequalities:

mt ≤ Y 0
t (2

√
2GF )−1/2

√
E1 sinβ, (5.18)

mi ≤ Y 0
i (2

√
2GF )−1/2

√
Ei cos β, (5.19)

where i = 2(b), 3(τ) and recalling that the yis are squares
of the Yukawa couplings Yi. Y 0

i denotes the values of these
couplings at some high energy scale and the bar denotes
running quantities at the electroweak scale. The Eis are as
defined in (2.9) and (2.16). These inequalities give bound-
ary conditions on the initial values of the Yukawa cou-
plings, necessary to retrieve the correct “physical” fermion
masses. For instance one immediately sees from (5.19) that
a large tanβ necessitates large initial values for the bot-
tom and τ Yukawa couplings.

Moreover, relying systematically on the fact that (1 +
|α|y0

i

∫
ui)|β| ≥ 1 for i = 1, 2, 3, one can derive the follow-

ing optimal rigorous inequalities for more involved combi-
nations:
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y18
b

y3
t y35

τ

≥ (y0
b )18

(y0
t )3(y0

τ )35
E18

2

E3
1E35

3
, (5.20)

y2
t y3

τ

y12
b

≥ (y0
t )2(y0

τ )3

(y0
b )12

E2
1E3

3

E12
2

, (5.21)

y4
b

y21
t yτ

≥ (y0
b )4

(y0
t )21y0

τ

E4
2

E21
1 E3

, (5.22)

which can be readily translated into inequalities involving
the running quark masses, tanβ and the three gauge cou-
plings (all taken at the electroweak scale), as well as the
values of the three Yukawa couplings at some initial scale

mb
18

mt
3mτ

35 ≥ (Y 0
b )18

(Y 0
t )3(Y 0

τ )35
E9

2√
E3

1E35
3

(2
√

2GF )10

sin3 β cos17 β
, (5.23)

mt
2mτ

3

mb
12 ≥ (Y 0

t )2(Y 0
τ )3

(Y 0
b )12

√
E3

3
E1

E6
2

tan2 β

cos7 β
(2

√
2GF )7/2,(5.24)

mb
4

mt
21mτ

≥ (Y 0
b )4

(Y 0
t )21Y 0

τ

E2
2√

E21
1 E3

(2
√

2GF )9

tan3 β sin18 β
. (5.25)

These inequalities express general necessary conditions
which delineate the physically allowed regions for the ini-
tial values of the three Yukawa couplings, i.e. those which
are consistent with the values of the physical top, bottom
and τ masses, prior to any model assumption4. (Note also
that (5.18) and (5.19) are already contained in (5.23)–
(5.25).) Finally, if we had neglected the τ Yukawa cou-
pling, the necessary inequalities involving the top and bot-
tom running masses would have read

mt

mb
6 ≥ Y 0

t

(Y 0
b )6

√
E1

E9
2

tanβ

cos5 β
(2

√
2GF )5/2, (5.26)

mb

mt
6 ≥ Y 0

b

(Y 0
t )6

√
E2

E9
1

1
tanβ sin5 β

(2
√

2GF )5/2. (5.27)

The different origin and meaning of these inequalities as
compared to (5.3) should be clear.

5.4 A numerical illustration

Even though the general form of the exact solutions is
not directly exploitable analytically, truncated iterations
provide very good approximations which furthermore can
be very well controlled using the convergence criteria we
derived. For instance, truncating at the first iteration, i.e.
approximating E12 and E21 in ((2.12) and (2.13) by the
explicit forms

E12(t) ' E1(t)

(1 − by0
b

∫ t

0 E2(t′)dt′)a/b
, (5.28)

E21(t) ' E2(t)

(1 − by0
t

∫ t

0 E1(t′)dt′)a/b
, (5.29)

and plugging them back into (2.10) and (2.11), one gets
a simple analytical solution. In Table 1, a comparison is

4 In a more refined treatment, one should of course correct
for the difference between the running and the pole masses

made for this solution with the Runge–Kutta method,
showing an excellent agreement of less than 1% accuracy
for any small, moderate or large values of tanβ.

Similar approximations can be obtained for the top–
bottom–τ case, at least if the initial Yukawa couplings ver-
ify the sufficient convergence criterion of Sect. 3.2. We will
not dwell on further possible applications in the present
paper.

6 Conclusion

We have written down integrated forms for the running of
the Yukawa couplings in the case of two and three Yukawa
fermions, which are easily generalizable to any number of
such fermions. These forms are exact solutions for the one-
loop renormalization group equations, valid for virtually
any gauge theory with a Yukawa sector. The most impor-
tant feature of such forms is that they allow for a rigor-
ous determination of convergence criteria as well as exact
conditions for avoiding Landau-like poles of the Yukawa
couplings. In the case of the MSSM, such criteria lead to
approximate analytical solutions in the top–bottom sys-
tem, with very good numerical accuracy ( <∼ 1%) for
any value of tanβ. Similar criteria were obtained for the
top–bottom–τ system, which lead to controllable analyt-
ical approximations. In this context we gave some pre-
liminary applications for Landau pole bounds in the top–
bottom system, commented on some infrared fixed points
and lines, and gave optimal necessary constraints on the
Yukawa couplings both in the top–bottom and top–
bottom–τ systems.

In view of the increasing phenomenological interest for
the large tanβ scenario, such solutions should prove useful
in determining the exact structure of the running of the
remaining parameters of the MSSM using for instance the
method developed in [19], and possible implications on the
structure of the (stable) infrared fixed points [20]. Very re-
cently, the authors of reference [21] have addressed similar
issues, starting though from approximate solutions.

Acknowledgements. We are indebted to J.-L. Kneur for provid-
ing us with the numerical illustration presented in Sect. 5.4 and
thank him as well as C. Le Mouël for discussions. This work has
been performed partly in the context of GDR-Supersymétrie
where preliminary results were published in [22].

A Necessary and sufficient conditions
for non-singular evolutions

A.1 A necessary condition

A necessary condition not to meet a singularity in running
up from an initial energy scale t = t0 to a given high energy
scale t = T < t0 is easy to establish. Indeed, if yb,t(t) are
free from singularities in the interval [T, t0], then Eij(t; t0)
are necessarily positive for any t in this interval, as can be
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Table 1. Numerical comparison between the exact one-loop solution (truncated to the first
iteration) and the Runge–Kutta RG evolution. The evolution is over 10 orders of magnitude
starting from the initial Yukawa coupling values shown in the table

tan β Y 0
b Y 0

t Yb(t), truncated Yb(t), R.–K. Yt(t), truncated Yt(t), R.–K.

2 0.0387453 1.13007 0.0145059 0.0145050 0.775788 0.775974
10 0.174138 1.01581 0.0630978 0.0631052 0.54263 0.542743
50 0.866544 1.01097 0.435682 0.439526 0.585453 0.590258

seen from (4.6) and the fact that b < 0 and yb,t(t) > 0. It
then follows from (4.7) that

E12(t, t0) ≥ E1(t, t0) and E21(t, t0) ≥ E2(t, t0), (A.1)

since the denominators in (4.7) are always smaller than 1
(recall that a/b > 0 and t < t0). From the above consid-
erations one immediately gets the inequalities

1 − |b|yt(t0)
∫ t0

t

dt′E12(t′; t0)

≤ 1 − |b|yt(t0)
∫ t0

t

dt′E1(t′; t0), (A.2)

1 − |b|yb(t0)
∫ t0

t

dt′E21(t′; t0)

≤ 1 − |b|yb(t0)
∫ t0

t

dt′E2(t′; t0), (A.3)

for any t in the interval [T, t0]. Again, from (4.6), the left-
hand side of (A.2) should remain positive for any t in the
interval [T, t0], for yt(t) is free from singularities there.
In particular, t = T gives the most significant condition,
whence

1 − |b|yt(t0)
∫ t0

T

dt′E1(t′; t0) > 0, (A.4)

which is the necessary condition given in (4.11). One sim-
ilarly obtains the second inequality in (4.11).

On the other hand, from (A.3) and the positivity of its
left-hand side one gets

E12(t; t0) =
E1(t; t0)(

1 − byb(t0)
∫ t

t0
E21(t′; t0)dt′

)a/b

≥ E1(t; t0)(
1 − byb(t0)

∫ t

t0
E2(t′; t0)dt′

)a/b
, (A.5)

valid since E1 and a/b are both positive. One can thus
repeat the proof which led to (A.4) with E1(t; t0) replaced
by

E1(t; t0)(
1 − byb(t0)

∫ t

t0
E2(t′; t0)dt′

)a/b

in (A.1) to get the first inequality in (4.12), and the second
in a similar way. The infinite tower of inequalities (4.11)–
(4.14) is obtained recursively in the same way.

A.2 A sufficient condition

Similarly to what was done in Sect. 3, (4.7) defines a map-
ping A in the form

e′
12(t) =

1(
1 − |b|y0

b

∫ t0
t

e2(t′)e21(t′)dt′
)a/b

,

e′
21(t) =

1(
1 − |b|y0

t

∫ t0
t

e1(t′)e12(t′)dt′
)a/b

, (A.6)

where

eij(t) ≡ Eij(t; t0)
Ei(t; t0)

, (A.7)

ei(t) ≡ Ei(t; t0), (A.8)
y0

t,b ≡ yt,b(t0). (A.9)

Again, we collect the eij(t)’s in a vector

~E(t) =

(
e12(t)
e21(t)

)
, (A.10)

and consider the range T ≤ t ≤ t0 where t0 corresponds
to some low energy scale at which initial values for yt, yb

are chosen, and T to a high energy scale (typically a GUT
scale) up to which we require the Yukawa couplings to
have a non-singular behaviour. We also define a norm sim-
ilar to (3.5):

‖ ~E ‖= max
{

sup
T≤t≤t0

| e12(t) |, sup
T≤t≤t0

| e21(t) |
}

. (A.11)

To determine the conditions we are looking for to avoid
singularities in the range [T, t0] it will actually suffice
to ask: when does the mapping defined in (A.6) become
a contraction? Parts of the proof will resemble that of
Sect. 3.1. However, in contrast to the latter case, where
the mapping defined in (3.3) could not have singularities
as long as U1(t), U2(t) ≥ 0, in the present case one has to
make sure that the mapping A keeps eij(t) within a finite
interval, 1 ≤ eij(t) ≤ R.

For a given R, let us thus denote by XR the set of all
vectors ~E(t) such that 1 ≤ eij(t) ≤ R for any t in the
interval [T, t0]. We look for conditions on the values of
R, y0

t , y0
b such that

(1) The mapping A sends any element of XR in XR (so
that the eij(t)’s remain in the interval [1, R] after an
arbitrary number of iterations of A);
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(2) A is a strictly contracting mapping in XR, that is

‖ A( ~E1) − A( ~E2) ‖≤ KR ‖ ~E1 − ~E2 ‖, (A.12)

with some KR < 1.
Condition (i) means that

e′
ij(t) =

1(
1 − |b|y0

b,t

∫ t0
t

ej(t′)eji(t′)dt′
)a/b

≤ R. (A.13)

On the other hand, one finds from eij(t′) ≤ R that

e′
ij ≤ 1(

1 − |b|y0
b,tR

∫ t0
t

ej(t′)dt′
)a/b

, (A.14)

provided that 1 − |b|y0
b,tR

∫ t0
t

ej(t′)dt′ is a positive num-
ber5.

In view of (A.13) and (A.14) a sufficient condition to
obtain (i) is

1(
1 − |b|y0

t R
∫ t0

t
e1(t′)dt′

)a/b
≤ R,

and
1(

1 − |b|y0
bR
∫ t0

t
e2(t′)dt′

)a/b
≤ R,

which easily translates into

y1 ≤ 1
R

− 1
R1+1/c

,

y2 ≤ 1
R

− 1
R1+1/c

, (A.15)

where c ≡ a/b and

y1
2

≡ |b|y0
t
b

∫ t0

T

e1
2
(t)dt. (A.16)

At this level R is still an arbitrary number. However, the
optimal situation would be to choose it such that the up-
per bound (A.15) becomes the largest possible. This would
be the case for R = (1 + 1/c)c, but one still has to check
whether this value is compatible with the second require-
ment (ii) which we turn to now.

Using the inequality (3.7), one gets from (A.6)

| e′
12(t) − ẽ′

12(t) |

≤
{

c|b|y0
b

∫ t0

T

dt′e2(t′) | e21(t′) − ẽ21(t′) |
}

/{[
1 − |b|y0

b max
{∫ t0

T

dt′e2(t′)e21(t′),

∫ t0

T

dt′e2(t′)ẽ21(t′)
}]1+c

}

≤ c|b|y0
b

∫ t0
T

dt′e2(t′)[
1 − |b|y0

bR
∫ t0

T
e2(t′)dt′

]1+c ‖ ~E − ~̃E ‖, (A.17)

5 This condition will, however, turn out to be already con-
tained in the sufficient condition we are looking for

valid for any t in the interval [T, t0] and ~E, ~̃E belonging
to XR. A similar inequality holds obviously for | e′

21(t) −
ẽ′
21(t) |, and one finally gets

‖ A( ~E) − A( ~̃E) ‖≤ KR ‖ ~E − ~̃E ‖, (A.18)

with

KR = max
{

cy2

(1 − Ry2)1+c
,

cy1

(1 − Ry1)1+c

}
, (A.19)

where y1, y2 are defined in (A.16). It is now easy to check
that when condition (A.15) is satisfied with strict inequal-
ities, one gets

KR < 1, (A.20)

even for the value of R quoted before, R0 = (1 + 1/c)c,
which maximizes the bounds in (A.15). Since (A.18) and
(A.20) mean that the mapping is indeed contracting, one
concludes that the sufficient conditions for (i) given in
(A.15) with maximal bounds, i.e.

y1 <
1

c(1 + 1/c)1+c
,

y2 <
1

c(1 + 1/c)1+c
, (A.21)

imply also (ii). It follows that when (A.21) (equivalently
(4.15) and (4.16)) are satisfied, a unique, regular, solution
for (4.7) exists in XR0 . The regularity of yt, yb as given by
(4.6) is then an immediate consequence.

B: Approximate solutions for yt � yb 6= 0

To first order in y0
b one finds for yt

yt(t) =
y0

t E1(t)
1 − by0

t F1(t)

[
1 +

ay0
b

1 − by0
t F1(t)

×
∫ t

0

E2(t′)
(1 − by0

t F1(t′))a/b−1 dt′
]

, (B.1)

where

F1(t) ≡
∫ t

0
E1(t′)dt′, (B.2)

and where the solution for yb is given in (2.7).

C: Exact integrated forms
for an arbitrary number of Yukawa couplings

Under the restriction of flavour conserving Yukawa cou-
plings, and assuming that the Higgs fields sit in represen-
tations such that the renormalization group equations for
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the Yukawa couplings can be cast in the following form at
the one-loop level [16]:

d
dt

yi = yi


fi(t) +

∑
j

aijyj


 , (C.1)

where i, j count the fermion fields, and yi denotes the
square of the ith Yukawa coupling.

Then the exact solution for each yi reads

yi(t) =
y0

i ui

1 − aiiy0
i

∫ t

0 ui

, (C.2)

where the uis are given by the implicit equations

ui(t) =
Ei(t)∏

j 6=i
(1 − ajjy0

j

∫ t

0 uj)aij/ajj

, (C.3)

and Ei(t) = e
∫ t
0 fi(t′)dt′

.
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Lett. B 126, 54 (1983); Nucl. Phys. B 236, 438 (1984)

4. L. Alvarez-Gaumé, J. Polchinski, M.B. Wise, Nucl. Phys.
B 221, 495 (1983)

5. W.A. Bardeen, C.T. Hill, M. Lindner, Phys. Rev. D 41,
1647 (1990)

6. For reviews see: H.P. Nilles, Phys. Rep. 110, 1 (1984); H.E.
Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

7. D.J. Castaño, E.J. Piard, P. Ramond, Phys. Rev. D 49,
4882 (1994); W. de Boer, R. Ehret, D.I. Kazakov, Z. Phys.
C 67, 647 (1994); V. Barger, M.S. Berger, P. Ohmann,
Phys. Rev. D 49, 4908 (1994)

8. J.A. Casas, A. Lleyda, C. Muñoz, Nucl. Phys. B 471, 3
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